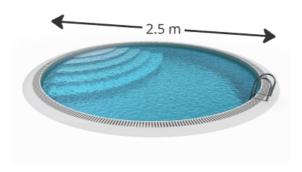
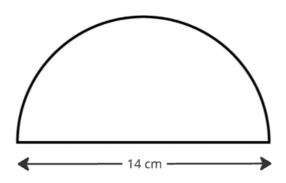

Area and Circumference of Circles

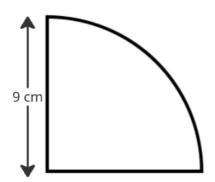

This worksheet requires you to calculate circumference, area, arc length, and sector area. Give all non-exact answers correct to 3 significant figures and remember to include units.

Full Circles and Simple Sectors

- 1. A circle has a radius of $12~\mathrm{cm}$. Calculate:
- a. The circumference.
- b. The area.

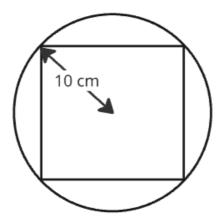


2. A circular swimming pool has a diameter of $16\ m$. Calculate the area of the pool's surface.

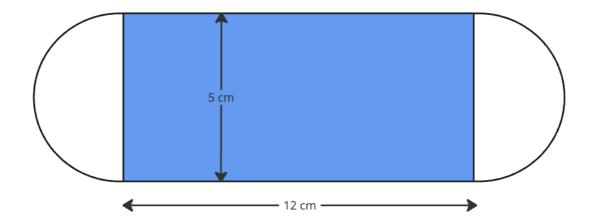


3. The circumference of a circular hoop is $2.5\ \mathrm{m}.$ Find the diameter of the hoop.

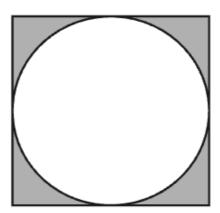
- 4. A semicircle (half circle) has a diameter of $14\ \mathrm{cm}$. Calculate:
- a. The area of the semicircle.
- b. The perimeter of the semicircle (the curved arc plus the straight edge).


5. A quarter-circle (quadrant) has a radius of $9\ m$. Calculate its area and its perimeter.

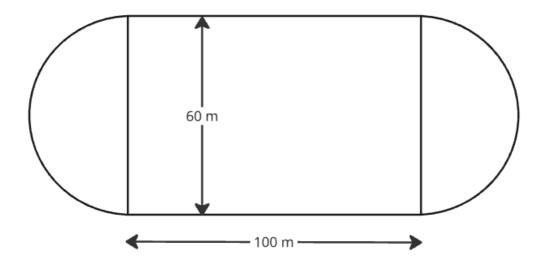
6. A circular disc has an area of $500\ {\rm cm^2}.$ Find the radius and the circumference of the disc.


7. A square is inscribed within a circle. The radius of the circle is $10\ \rm cm.$ Find the area of the square.

(Hint: The diameter of the circle is the diagonal of the square.)


Composite Shapes and Application

8. A company logo is made from a rectangle $5~cm\times12~cm$ with two semicircles attached to the 5~cm sides. Find the total area of the logo.



9. A car wheel has a radius of $35\ cm$. How many complete rotations does the wheel make when the car travels $1\ km$? (Remember to convert units first.)

10. Find the area of the shaded region below, which is the area between a square of side length $10\ cm$ and an inscribed circle (which touches all four sides).

11. A running track is formed by a rectangle of $100~\rm m$ by $60~\rm m$ with two semi-circles on the shorter sides. Calculate the total area of the running track.

Arc Length and General Sector Area

For these problems, use the general formulas: Arc Length $=\frac{\theta}{360} imes 2\pi r$ and Sector Area $=\frac{\theta}{360} imes \pi r^2$.

- 12. A circle has a radius of $15\ cm.$ A sector of this circle has a central angle of $72^{\circ}.$ Calculate:
- a. The length of the arc.
- b. The area of the sector.

13. A circular garden bed has a diameter of $8\ m$. A 120° sector of the bed is dedicated to roses. Find the area of the rose section.

14. Calculate the perimeter of the sector with a radius of $6~\rm cm$ and a central angle of $150^{\circ}.$

15. Reverse Problem: An arc of a circle is $20\ m$ long. If the radius of the circle is $8\ m$, calculate the central angle of the arc to the nearest degree.