Quadratic Patterns (Second Differences)

A sequence is quadratic if the second difference (the difference between the first differences) is constant. Use the tables below to find the first and second differences for each sequence.

Part A: Finding Differences

1. Determine if the sequence $5, 8, 13, 20, 29, \ldots$ is linear or quadratic.

Term Number (n)	1	2	3	4	5
Term Value	5	8	13	20	29
First Difference					
Second Difference					

Conclusion:			
-------------	--	--	--

2. Determine if the sequence $1,6,15,28,45,\ldots$ is linear or quadratic.

Term Number (n)	1	2	3	4	5
Term Value	1	6	15	28	45
First Difference					
Second Difference					

Conclusion:		
-------------	--	--

3. Determine if the sequence $4,7,10,13,16,\ldots$ is linear or quadratic.

Term Number (n)	1	2	3	4	5
Term Value	4	7	10	13	16
First Difference					
Second Difference					

4. Determine if the sequence $1,0,-1,0,3,\ldots$ is linear or quadratic.

Term Number (n)	1	2	3	4	5
Term Value	1	0	-1	0	3
First Difference					
Second Difference					

Conclusion:	

5. The second difference of a quadratic sequence is 4. The first two
terms are 10 and 16. Find the next three terms.
Next three terms:
6. Find the next two terms of the quadratic sequence: $1,5,12,22,\ldots$
Next two terms:

Part B: Finding the Rule for Quadratic Patterns

7. The quadratic sequence is $2,6,12,20,30,\ldots$
(a) Find the rule for the n -th term (T) .
Rule:
(b) Use your rule to find the 10th term in the sequence.
10th Term:
8. Find the rule for the n -th term (T) of the sequence: $3,8,15,24,35,\ldots$
Rule:

9. A quadratic sequence has the rule $T=n^2+5n-1$. Which term in the

sequence has a value of 69?

Term number (n): _____

10. The number of square tiles needed to build a patio of width n follows the sequence $3,10,21,36,\ldots$
(a) Find the rule for the number of tiles (T) required for a patio of width n .
Rule:
(b) Use your rule to find how many tiles are needed for a patio of width 8.
Tiles for width 8:
II. The quadratic sequence is $1,6,17,34,57,\ldots$
Find the rule for the n -th term (T) .
Rule:

12. Find the rule for the n -th term (T) of the sequence: $10, 16, 26, 40, 58, \ldots$
Rule:
13. A quadratic rule is $T=3n^2-2n+5$. Find the 12 -th term (T_{12}) of the
sequence. 12th Term: